ALTERNATIVE METHOD TO PRE-DIAGNOSED CORONARY ARTERY DISEASE USING PHOTOPLETHYSMOGRAPHY: A LESSON FROM COVID-19 PANDEMIC (Kaedah Alternatif untuk Diagnosis Awal Penyakit Arteri Koronari melalui Fotopletismografi: Satu Pengajaran daripada Pandemik COVID-19)

Mohd Zubir Suboh, Rosmina Jaafar, Nazrul Anuar Nayan, Noor Hasmiza Harun, Mohd Shawal Faizal Mohamad, Hamzaini Abdul Hamid

Abstract


ABSTRACT

Ischemic heart disease (IHD) is one of the underlying factors that contribute to mortality in COVID-19 infected patients. IHD or coronary artery disease (CAD) is commonly diagnosed using invasive coronary angiography (ICA) or computed tomography angiography (CTA). However, these imaging modalities are costly, operationally complex and hardly accessible, especially during the pandemic. Thus, researchers have great interest in using non-invasive techniques of electrocardiography (ECG) and photoplethysmography (PPG) as alternatives to pre-diagnose the disease. This study focused on the detection of the severity of stenosis in the coronary artery using PPG among newly diagnosed IHD patients. A total of 88 patients of Hospital Canselor Tuanku Muhriz were involved. They were grouped as having severe stenosis if their stenosis percentage are at 70% or more, based on ICA or CTA evidence. A total of 73 time-domain features were analyzed in this study. Five machine learning methods were investigated to categorize the patients using up to 15 selected features. Results showed that the Discriminant Analysis method performed the best with accuracy, sensitivity and specificity of 88.46%, 100% and 70%, respectively. In conclusion, the severity of stenosis in coronary arteries has a high potential of being detected using simple non-invasive tools of PPG.

ABSTRAK

Penyakit jantung iskemik (IHD) merupakan salah satu faktor utama yang menyumbang kepada kematian pesakit yang dijangkiti COVID-19. IHD atau penyakit arteri koronari (CAD) biasanya didiagnosis menggunakan angiografi koronari invasif (ICA) atau angriografi pengkomputeran tomografi (CTA). Walau bagaimanapun, modaliti pengimejan ini mahal, kompleks dari segi operasi, dan sukar diakses terutamanya semasa wabak pandemik. Oleh itu, penyelidik lebih berminat dalam menggunakan teknik bukan invasif elektrokardiografi (ECG) dan fotopletismografi (PPG) sebagai alternatif untuk diagnosis awal CAD. Kajian ini memberi tumpuan kepada pengesanan keterukan penyempitan arteri koronari menggunakan PPG di kalangan pesakit IHD yang baru. Seramai 88 pesakit dari Hospital Canselor Tuanku Muhriz telah terlibat dalam kajian ini. Mereka dikelompokkan sebagai mengalami stenosis teruk jika peratusan stenosis mereka berada pada 70% atau lebih, berdasarkan bukti ICA atau CTA. Sebanyak 73 fitur domain masa telah dianalisis dalam kajian ini. Lima kaedah pembelajaran mesin telah digunakan untuk mengkategorikan pesakit dengan menggunakan sehingga 15 fitur pilihan. Kaedah Analisis Diskriminasi menunjukkan prestasi terbaik dengan ketepatan, kepekaan, dan kekhususan masing-masing pada 88.46%, 100%, dan 70%. Kesimpulannya, keterukan penyempitan arteri koronari mempunyai potensi tinggi untuk dikesan dengan menggunakan peranti PPG bukan invasif yang mudah.


Full Text:

PDF

References


Banerjee, Rohan, Sakyajit Bhattacharya & Shahnawaz Alam. 2018. Time series and morphological feature extraction for classifying coronary artery disease from photoplethysmogram. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) - Proceedings, hlm. 950-54. https://doi.org/10.1109/ICASSP.2018.8462604.

Banerjee, Rohan, Anirban Dutta Choudhury, Ramu Vempada, Arpan Pal & K. M. Mandana. 2016. Identifying coronary artery disease from photoplethysmogram. UbiComp 2016 Adjunct - Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, hlm. 1084-88. https://doi.org/10.1145/2968219.2972712.

Castaneda, Denisse, Aibhlin Esparza, Mohammad Ghamari, Cinna Soltanpur & Homer Nazeran. 2018. A review on wearable photoplethysmography sensors and their potential future applications in health care. International Journal of Biosensors & Bioelectronics 4 (4): 139-48. https://doi.org/10.15406/ijbsbe.2018.04.00125.

Ihsan, Muhammad Fadhil, Satria Mandala & Miftah Pramudyo. 2022. Study of feature extraction algorithms on photoplethysmography (PPG) signals to detect coronary heart disease. 2022 International Conference on Data Science and Its Applications (ICoDSA) 300-304. Bandung, 6-7 Julai. https://doi.org/10.1109/ICoDSA55874.2022.9862855.

Jabatan Perangkaan Malaysia. 2021. Department of Statistics Malaysia Press Release: Statistics on Causes of Death, Malaysia, 2021. https://www.dosm.gov.my/v1/index.php?r=column/cthemeByCat&cat=401&bul_id=R3VrRUhwSXZDN2k4SGN6akRhTStwQT09&menu_id=L0pheU43NWJwRWVSZklWdzQ4TlhUUT09.

Kumar, Mohit, Ram Bilas Pachori & U. Rajendra Acharya. 2017. Automated diagnosis of myocardial infarction ECG signals using sample entropy in flexible analytic wavelet transform framework. Entropy 19 (9): 2-14. https://doi.org/10.3390/e19090488.

Liang, Yongbo, Mohamed Elgendi, Zhencheng Chen & Rabab Ward. 2018. Analysis: An optimal filter for short photoplethysmogram signals. Scientific Data 5: 1-12.

https://doi.org/10.1038/sdata.2018.76.

Nayan, Nazrul Anuar & Hafifah Ab Hamid. 2019. Evaluation of patient electrocardiogram datasets using signal quality indexing. Bulletin of Electrical Engineering and Informatics 8 (2): 519-26. https://doi.org/10.11591/eei.v8i2.1289.

Ng, Sher May, Jiliu Pan, Kyriacos Mouyis, Sreenivasa Rao Kondapally Seshasai, Vikas Kapil, Kenneth M. Rice & Ajay K. Gupta. 2022. Quantifying the excess risk of adverse COVID-19 outcomes in unvaccinated individuals with diabetes mellitus, hypertension, ischaemic heart disease or myocardial injury: A metaanalysis. Frontiers in Cardiovascular Medicine 9: 1-12. https://doi.org/10.3389/fcvm.2022.871151.

Núñez, Alicia, S. D. Sreeganga & Arkalgud Ramaprasad. 2021. Access to healthcare during Covid-19. International Journal of Environmental Research and Public Health 18 (6): 1-12. https://doi.org/10.3390/ijerph18062980.

Pal, Poulomi & Manjunatha Mahadevappa. 2022. Adaptive multi-dimensional dual attentive DCNN for detecting cardiac morbidities using fused ECG-PPG signals. IEEE Transactions on Artificial Intelligence 4 (5): 1225-1235. https://doi.org/10.1109/TAI.2022.3184656.

Paradkar, Neeraj & Shubhajit Roy Chowdhury. 2017. Coronary artery disease detection using photoplethysmography. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society(EMBS), hlm. 100-103. https://doi.org/10.1109/EMBC.2017.8036772.

Singla, Muskan, Syed Azeemuddin & Prasad Sistla. 2020. Accurate fiducial point detection using Haar wavelet for beat-by-beat blood pressure estimation. IEEE Journal of Translational Engineering in Health and Medicine 8: 1-11. https://doi.org/10.1109/JTEHM.2020.3000327.

Suboh, Mohd Zubir, Rosmina Jaafar, Nazrul Anuar Nayan, Noor Hasmiza Harun & Mohd Shawal Faizal Mohamad. 2022. Analysis on four derivative waveforms of photoplethysmogram (PPG) for fiducial point detection. Frontiers in Public Health 10: 1-12. https://doi.org/10.3389/fpubh.2022.920946.

Tantimongcolwat, Tanawut, Thanakorn Naenna, Chartchalerm Isarankura-Na-Ayudhya, Mark J. Embrechts & Virapong Prachayasittikul. 2008. Identification of ischemic heart disease via machine learning analysis on magnetocardiograms. Computers in Biology and Medicine 38 (7): 817-25. https://doi.org/10.1016/j.compbiomed.2008.04.009.

World Health Organization. 2020. The top 10 causes of death - factsheet. WHO Reports. https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-ofdeath.




DOI: http://dx.doi.org/10.17576/JH-2024-1601-03

Refbacks

  • There are currently no refbacks.


  ISSN: 1985-6830

eISSN: 2550-2271

JURNAL HADHARI: AN INTERNATIONAL JOURNAL
Institut Islam Hadhari
Universiti Kebangsaan Malaysia
43600 UKM Bangi
Selangor, MALAYSIA.


Phone: +603-8921 7187/7176/6994
Fax: +603-8921 6990
Email: jhadhari@ukm.edu.my

Web: ejournals.ukm.my/jhadhari