Landslide Pattern Analysis in Penang Island using Average Nearest Neighbor (ANN) approach in Quantum GIS (QGIS)

Tharshini Murthy, Izham Mohamad Yusoff, Ismail Ahmad Abir, Siti Hamsah Samsudin

Abstract


Landslides, characterized by the sudden and often rapid movement of rock, soil, debris, or a combination of these materials down a slope or inclined surface, present a considerable danger to humans, animals and the environment. Their potential to cause widespread destruction and loss of life underscores the urgency of visually analyzing their distribution patterns, particularly in regions like Malaysia. To effectively manage and control landslip occurrences, this study proposes the establishment of a landslide monitoring system in high-risk areas, utilizing computer-generated models to evaluate geographical distribution patterns. This approach is vital for competent landslides management. The core objective of this research is to evaluate the spatial arrangement of the distribution pattern, discerning whether it manifests clustering or dispersion. The investigation focuses on 43 recorded landslide incidents spanning 12 years across Penang Island. The spatial mean center of landslip episodes assumes a central role in spatial pattern analysis. The findings reveal a clustered pattern in the study area, evident through an average nearest neighbor (ANN) ratio of less than 1, accompanied by a z-score of -2.196005. The nearest neighbor ratio stands at 0.82. Furthermore, the mean center for landslide incidents on Penang Island is situated at coordinates 100.272704 (longitude) and 5.389421 (latitude). Subsequently, nine landslide conditioning factors, identified through prior studies, were selected. These factors are employed to distribute landslide incidents on parameter layer maps, aiding in pinpointing high occurrence areas based on each parameter. Future studies should adopt a comprehensive perspective and attain a profound understanding of specific slope conditions in Penang Island, enabling the effective implementation of mitigation measures that align with the objectives of Sustainable Development Goals (SDG13 – Climate Action). This goal emphasizes the importance of fostering resilience and reducing disaster risks.

 

Keywords: Average Nearest Neighbor (ANN), landslides, landslide conditioning factor, Penang Island, spatial mean centre, spatial pattern analysis 


Keywords


Average Nearest Neighbor (ANN), landslides, landslide conditioning factor, Penang Island, spatial mean centre, spatial pattern analysis

Full Text:

PDF

References


Ab Rahman, A. A., Abd Majid, N., & Selamat, S. N. (2020). A comprehensive deriving the factors of landslide happened in Malaysia. International Journal on Emerging Technologies, 11(5), 310–314.

Abd Majid, N., & Rainis, R. (2019). Application of Geographical Information Systems (GIS) and discriminant analysis in modelling slope failure incidence in Pulau Pinang, Malaysia. Sains Malaysiana, 48(7), 1367–1381.

Aditian, A., Kubota, T., & Shinohara, Y. (2018). Comparison of GIS-based landslide susceptibility models using frequency ratio, logistic regression and artificial neural network in a tertiary region of Ambon, Indonesia. Geomorphology, 318, 101–111.

Adnan, M., Rahman, S., Ahmed, N., Ahmed, B., Rabbi, M., & Rahman, R. (2020). Improving spatial agreement in machine learning-based landslide susceptibility mapping. Remote Sensing, 12(20), 3347.

Akomolafe, G. F., & Rosazlina, R. (2022). Land use and land cover changes influence the land surface temperature and vegetation in Penang Island, Peninsular Malaysia. Scientific Reports, 12(1), 1–15.

An, Y., Tan, X., Gu, B., & Zhu, K. (2020). Flood risk assessment using the CV-TOPSIS method for the Belt and Road Initiative: An empirical study of Southeast Asia. Ecosystem Health and Sustainability, 6(1), 1–12.

Bandibas, J., & Takarada, S. (2019). Mobile application and a web-based Geographic Information System for sharing geological hazards information in East and Southeast Asia. Journal of Geographic Information System, 11, 309–320.

Beyene, A., Tesema, N., Fufa, F., & Tsige, D. (2023). Geophysical and numerical stability analysis of landslide incident. Heliyon, 9(3), e13852.

Chen, L., Ge, X., Yang, L., Li, W., & Peng, L. (2023). An improved multi-source data-driven landslide prediction method based on spatio-temporal knowledge graph. Remote Sensing, 15(8), 2126.

Chen, W., Shirzadi, A., Shahabi, H., Ahmad, B., Zhang, S., Hong, H., & Zhang, N. (2017). A novel hybrid artificial intelligence approach based on the rotation forest ensemble and naïve Bayes tree classifiers for a landslide susceptibility assessment in Langao County, China. Geomatics

Natural Hazards And Risk, 8(2), 1955-1977.

Chen, W., Sun, Z., & Han, J. (2019). Landslide susceptibility modeling using integrated ensemble weights of evidence with logistic regression and Random Forest models. Applied Sciences, 9(1), 171.

Chigira, M., Mohamad, Z., Sian, L. C., & Komoo, I. (2011). Landslides in weathered granitic rocks in Japan and Malaysia. Bulletin of the Geological Society of Malaysia, 57(57), 1–6.

Choy, E. A., Khair, E. B. M., Atan, A., Sahani, M., & Ali, Z. M. (2011). Perubahan cuaca dan penyakit denggi: Kajian kes di daerah Seremban, Negeri Sembilan, Malaysia. e-BANGI: Jurnal Sains Sosial dan Kemanusiaan, 6(1), 38–48.

Elmahdy, S., Marghany, M., & Mohamed, M. (2014). Application of a weighted spatial probability model in GIS To analyse landslides in Penang Island, Malaysia. Geomatics Natural Hazards and Risk, 7(1), 345-359.

Fuad Nizam. (2023, June 2). Victims of Batang Kali landslide upset over delays in investigation results. New Straits Times https://www.nst.com.my/news/nation/2023/06/915868/victims-batang-kali-landslide-upset-over-delays-investigation-results

He, Q., Jiang, Z., Wang, M., & Liu, K. (2021). Landslide and wildfire susceptibility assessment in Southeast Asia using ensemble machine learning methods. Remote Sensing, 13(8), 1–25.

Hidayat, R., Sutanto, S. J., Hidayah, A., Ridwan, B., & Mulyana, A. (2019). Development of a landslide early warning system in Indonesia. Geosciences, 9(10), 451.

Huqqani, I. A., Tay, L. T., & Saleh, J. M. (2019). Analysis of landslide hazard mapping of Penang Island Malaysia using bivariate statistical methods. Indonesian Journal of Electrical Engineering and Computer Science, 16(2), 781–786.

Jason Loh, & Amanda Yeo. (2022, January 17). Stop illegal logging once and for all to minimise the occurrence of landslides and floods. Bernama. https://www.bernama.com/en/thoughts/news.php?id=2044001

Kazmi, D., Qasim, S., Harahap, I. S., Baharom, S., Imran, M., & Moin, S. (2016). A study on the contributing factors of major landslides in Malaysia. Civil Engineering Journal, 2(12), 669–678.

Kuradusenge, M., Kumaran, S., & Zennaro, M. (2020). Rainfall-Induced landslide prediction using machine learning models: The case of Ngororero District, Rwanda. International Journal Of Environmental

Research And Public Health, 17(11), 4147.

Lin, Y.-P., Chu, H.-J., & Wu, C.-F. (2010). Spatial pattern analysis of landslide using landscape metrics and logistic regression: A case study in Central Taiwan. Hydrology and Earth System Sciences Discussions, 7(3), 3423–3451.

Luo, X., Lin, F., Zhu, S., Yu, M., Zhang, Z., Meng, L., & Peng, J. (2019). Mine Landslide susceptibility assessment using IVM, ANN and SVM Models considering the contribution of affecting factors. Plos One, 14(4), E0215134.

Nocentini, N., Rosi, A., Segoni, S., & Fanti, R. (2023). Towards landslide space-time forecasting through machine learning: The influence of rainfall parameters and model setting. Frontiers in Earth Science, 11.

Mahmud, A. R., Awad, A., & Billa, R. (2013). Landslide susceptibility mapping using averaged weightage score and GIS: A case study at Kuala Lumpur. Pertanika Journal of Science and Technology, 21(2), 473–486.

Majid, N. A., Taha, M. R., & Selamat, S. N. (2020). Historical landslide events in Malaysia 1993-2019. Indian Journal of Science and Technology, 13(33), 3387–3399.

Majid, N. A., Zulkafli, S. A., Zakaria, S. Z. S., Razman, M. R., & Ahmed, M. F. (2022). Spatial Pattern analysis on landslide incidents in Kuala Lumpur, Malaysia. Ecology, Environment and Conservation, 28(3), 1624–1627.

Merghadi, A., Yunus, A. P., Dou, J., Whiteley, J., ThaiPham, B., Bui, D. T., Avtar, R., & Abderrahmane, B. (2020). Machine learning methods for landslide susceptibility studies: A comparative overview of algorithm performance. Earth-Science Reviews, 207, 103225.

Muaz Abu Mansor Maturidi, A., Kasim, N., Abu Taib, K., Nur Aifa Binti Wan Azahar, W., & Husain Husain, N. M. (2020). Rainfall-Induced Landslides in Cameron Highland Area, Malaysia. IOP Conference Series: Materials Science and Engineering, 917, 012019.

Murthy, T., Yusoff, I. M., Samsudin, S. H., Majid, T. A., Abir, I. A., Yong, C. H., & Ismail, M. A. M. (2023). Geographical Information System (GIS)-Based landslide susceptibility mapping in Malaysia: A review of past, current and future trends. Academic Journal of Interdisciplinary Studies, 12(3), 162.

Pham, B., Tien, D., Dholakia, M., Prakash, I., Pham, V., Mehmood, K. & Lê, Q. (2016). A novel ensemble classifier of rotation forest and naïve Bayer for landslide susceptibility assessment at the Luc Yen District, Yen Bai Province (Viet Nam) using GIS. Geomatics Natural Hazards And Risk, 8(2), 649-671.

Pradhan, B., & Lee, S. (2010). Delineation of landslide hazard areas on Penang Island, Malaysia, by using frequency ratio, logistic regression, and Artificial Neural Network models. Environmental Earth Sciences, 60(5), 1037–1054.

Psomiadis, E., Papazachariou, A., Soulis, K. X., Alexiou, D. S., & Charalampopoulos, I. (2020). Landslide mapping and susceptibility assessment using geospatial analysis and earth observation data. Land, 9(5), 133.

Saha, A., Villuri, V. G. K., & Bhardwaj, A. (2022). Development and assessment of GIS-Based landslide susceptibility mapping models using ANN, Fuzzy-AHP, and MCDA in Darjeeling Himalayas, West Bengal, India. Land, 11(10), 1711.

Samat, N., & Mahamud, M. A. (2019). Impact Of Urban Development To The Communities In George Town Conurbation. European Proceedings of Social & Behavioural Sciences, 68, 749–759.

Selamat, S. N., Abd Majid, N., Mohd Taib, A., Taha, M. R., & Osman, A. (2023). The spatial relationship between landslide and land use activities in Langat River Basin: A case study. Physics and Chemistry of the Earth, 129, 103289.

Selamat, S. N., Majid, N. A., Taha, M. R., & Osman, A. (2022). Landslide susceptibility model using Artificial Neural Network (ANN) approach in Langat River Basin, Selangor, Malaysia. Land, 11(6), 833.

Shirzadi, A., Soliamani, K., Habibnejhad, M., Kavian, A., Chapi, K., Shahabi, H., Chen, W., Khosravi, K., Pham, B. T., Pradhan, B., Ahmad, A., Ahmad, B. A., & Bui, D. (2018). Novel GIS based machine learning algorithms for shallow landslide susceptibility mapping. Sensors, 18(11), 3777.

Simon, N., Roiste, D. E., Crozier, M., & Ghani Rafek, A. (2017). Representing landslides as polygon (areal) or points? how different data types influence the accuracy of landslide susceptibility maps (Mempersembahkan tanah runtuh dalam bentuk poligon (luas) atau titik? bagaimana jenis data berbeza. Sains Malaysiana, 46(1), 27–34.

Song, Z., Li, X., Lizárraga, J. J., Zhao, L., & Buscarnera, G. (2020). Spatially distributed landslide triggering analyses accounting for coupled infiltration and volume change. Landslides, 17(12), 2811–2824.

Stanley, T., Kirschbaum, D., Benz, G., Emberson, R., Amatya, P., Medwedeff, W. & Clark, M. (2021). Data-Driven landslide nowcasting at the global scale. Frontiers In Earth Science, 9.

Tew, Y. L., Tan, M. L., Samat, N., & Yang, X. (2019). Urban expansion analysis using landsat images in Penang, Malaysia. Sains Malaysiana, 48(11), 2307–2315.

Titti, G., Sarretta, A., Lombardo, L., Crema, S., Pasuto, A., & Borgatti, L. (2022). Mapping susceptibility with open-source tools: A new plugin for QGIS. Frontiers in Earth Science, 10, 1–14.

Wang, Y., Wu, X., Chen, Z., Ren, F., Liao, F., & Du, Q. (2019). Optimizing the predictive ability of machine learning methods for landslide susceptibility mapping using smote for Lishui City in Zhejiang Province, China. International Journal of Environmental Research and Public Health, 16(3), 368.

WHO. (2023). Landslides.

Yahaya, N. S., Ramli, Z., Thompson, A., & Pereira, J. J. (2019). Landslides in Penang Island, Malaysia: Insights on emerging issues and the role of geoscience. Warta Geologi, 45, 37–43.

Zhang, W., Liu, S., Wang, L., Samui, P., Chwała, M., & He, Y. (2022). Landslide susceptibility research combining qualitative analysis and quantitative evaluation: A case study of Yunyang County in Chongqing, China. Forests, 13(7), 1055.

Zheng, B. (2023). Improving the landslide susceptibility prediction accuracy by using genetic algorithm optimized machine learning approach. International Journal Of Intelligent Systems, 1, 5525793.

Zulkafli, S. A., Abd Majid, N., & Rainis, R. (2023a). Local variations of landslide factors in Pulau Pinang, Malaysia. IOP Conference Series: Earth and Environmental Science, 1167(1), 012024

Zulkafli, S. A., Abd Majid, N., & Rainis, R. (2023b). Spatial analysis on the variances of landslide factors using Geographically Weighted Logistic Regression in Penang Island, Malaysia. Sustainability, 15(1), 852.

Zulkafli, S. A., Majid, N. A., Zakaria, S. Z. S., Razman, M. R., & Ahmed, M. F. (2023). Influencing Physical characteristics of landslides in Kuala Lumpur, Malaysia. Pertanika Journal of Science and Technology, 31(2), 995–1010.


Refbacks

  • There are currently no refbacks.