PENGELASAN SOALAN PEPERIKSAAN BERLANDASKAN TAKSONOMI BLOOM MENGGUNAKAN PEMBELAJARAN MESIN
Abstract
Peperiksaan adalah perlu untuk menguji tahap kefahaman atas sesuatu perkara atau bidang. Untuk menjana soalan peperiksaan yang berkesan, pengajar haruslah mempunyai garis panduan untuk membina soalan yang seimbang daripada tahap kognitif yang berlainan yang dapat menilai pelajar dengan efektif. Garis panduan Taksonomi Bloom adalah antara garis panduan popular yang digunapakai oleh pengajar pada hari ini. Walau bagaimanapun, pengklasifikasian secara manual berdasarkan Taksonomi Bloom adalah satu perkara yang amat mencabar dan memerlukan masa yang panjang. Justeru, kajian ini mencadangkan satu model pengklasifikasian soalan peperiksaan berlandaskan taksonomi Bloom menggunakan teknik pembelajaran mesin. Pengelas yang digunakan dalam kajian ini ialah Mesin Vektor Sokongan(MVS), Bayes Naif (BN), Hutan Rawak (Random Forest), dan Jiran K-Terdekat (JKT). Untuk mendapatkan ketepatan yang lebih tinggi, set soalan data perlu dilakukan pra-pemprosesan seterusnya ciri pengekstrakan seperti beg perkataan digunakan. Satu laman sesawang yang mesra pengguna dibangunkan bagi memudahkan pengajar untuk mengklasifikasikan soalan peperiksaan mereka dengan mudah dan cepat serta melihat hasil analisis dari pengelas. Prototaip dari kajian ini dapat membantu para pengajar untuk menganalisis soalan peperiksaan bagi memenuhi keperluan untuk tahap kognitif yang berbeza bagi pelajar mengikut tahap pengajian.
Keywords
Full Text:
PDFReferences
Bloom, B. (1956). Taxonomy Of educational objectives: The Classification of educational goals. London: Longman.
Curzon, L. and Tummons, J. (2013). Teaching in further education: An Outline of principles and practice. Seventh edition. London: Bloomsbury.
Ghanem Nayef, E., Rosila, N., Yaacob, N. & Ismail, H. N. (2013). Taxonomies of educational objective domain. International Journal of Academic Research in Business and Social Sciences, 3(9), 2222–6990.
Haris, S.Sufi and Omar Nazlia (2015). A Rule-based approach in bloom's taxonomy question classification through natural language processing, IEEE 2012, pp. 410-414.
Haris, S. S. & Omar, N. (2015). Bloom’s taxonomy question categorization using rules and n-gram approach. Journal of Theoretical and Applied Information Technology 76(3), 401–407.
Hassan, M. R., Hossain, M. M., Bailey, J., dan Ramamohanarao, K. (2008). Improving K-Nearest neighbor classification with distance functions based on receiver operating characteristics. Lecture Notes in Computer Science Book Series (LNAI, Volume 5211).
Jayakodi, M. Bandara and I. Perera, (2015) An automatic classifier for exam questions in Engineering: A process for Bloom's taxonomy, 2015 IEEE International Conference on Teaching, Assessment, and Learning for Engineering (TALE), Zhuhai, China, 2015, pp. 195-202, doi: 10.1109/TALE.2015.7386043.
Jain, M., Beniwal, R., Ghosh, A., Grover, T., Tyagi, U. (2019). Classifying question papers with bloom’s taxonomy using machine learning techniques. In: Singh, M., Gupta, P., Tyagi, V., Flusser, J., Ören, T., Kashyap, R. (eds) Advances in computing and data sciences. ICACDS 2019. Communications in Computer and Information Science, vol 1046. Springer, Singapore.
Jayalakshmi, S. & Ananthi, (2015). Question classification: A Review of state of the art algorithms and approaches. Indian Journal of Science and Technology, pp. 1-4 8(29).
Jayakodi K., Bandara M., Perera. I, and Meedeniya D. (2016). WordNet and cosine similarity based classifier of exam questions using Bloom’s taxonomy. International Journal of Emerging Technologies in Learning (iJET), 11(04), pp. 142–149.
Osadi, K., Fernando, M. and Welgama, W. (2017). Ensemble classifier based approach for classification of examination questions into bloom’s taxonomy cognitive levels. International Journal of Computer Applications 162(4),1-6.
Marr, B. (2017). Supervised V Unsupervised Machine Learning -- What’s the difference? Forbes. Retrieved March 26, 2022, from https://www.forbes.com/sites/bernardmarr/2017/03/16/supervised-v unsupervised-machine-learning-whats-the-difference/?sh=532d2a96485d.
Pincay, J., Ochoa, X. (2013). Automatic classification of answers to discussion forums according to the cognitive domain of blooms taxonomy using text mining and a bayesian classifier. In: Proceedings of World Conference on Educational Multimedia, Hypermedia and Telecommunications, pp. 626–634.
Stringer, J. K., Santen, S. A., Lee, E., Rawls, M., Bailey, J., Richards, A., Biskobing, D. (2021). Examining Bloom’s Taxonomy in multiple choice questions: students’ approach to questions. Medical Science Educator, 31(4), 1311–1317.
Swart, A. J. (2010). Evaluation of final examination papers in engineering : A Case study using Bloom ’ s Taxonomy. 53(2), pp. 257-264, IEEE Transactions on Education.
Yahya, A. A., Toukal, Z. & Osman, A. (2012). Bloom’s Taxonomy – Based
classification for item bank questions using support vector machines bloom ’s taxonomy – Based classification for item bank. Modern Advances in Intelligent Systems and Tools, Studies in Computational Intelligence 431, pp. 135–140.
Yusof N. and Jing H.C(2010). Determination of blooms cognitive level of questions item using artificial neural network. International Conference on Intelligent System Design and Applicatons, pp. 866-870.
Refbacks
- There are currently no refbacks.
Index