POST-COVID-19 PANDEMIC MENTAL DISORDERS PREDICTION USING PHOTOPLETHYSMOGRAM (Ramalan Gangguan Mental Selepas Pandemik COVID-19 Menggunakan Fotopletismogram)

Azwani Awang, Nazrul Anuar Nayan, Nik Ruzyanei Nik Jaafar, Mohd Zubir Suboh, Khairul Anuar A Rahman

Abstract


ABSTRACT


Mental disorders interfere with functioning and affect a person’s quality of life. The COVID-19 pandemic has caused an increase in the number of people who are suffering from mental disorders, including suicide. Many people are unaware of their mental health status because the signs might not be readily apparent. In this study, a machine learning (ML) approach that differentiates between case groups, i.e., patients diagnosed with mental disorders and control groups, was developed using photoplethysmogram (PPG) morphology. The subjects consisted of 92 volunteers, who were divided equally into case and control groups, matched in gender and age. PPG signals were collected individually in a 5-min experiment in a relaxation mode. Out of 13 morphological features of PPG, eight features were extracted using the pulse rate variability method and five features were extracted using the fiducial point detection method. Statistical and correlation analyses have verified eight features as inputs to five types of ML algorithms. The results showed that the kNN model achieved the best performance of 92.86%, 99.10%, and 96.43% for sensitivity, specificity, and accuracy. The value of error in prediction, or mean squared error for kNN, was the lowest at 0.036. In terms of model robustness, the area under the curve of the receiver operating characteristic curve for kNN (0.964) was higher than the other models. A mental disorder model has been developed using Machine Learning (ML) from PPG extraction. In conclusion, mental disorders can be detected by PPG based on the obtained results. This development also respects Islamic ethical values, emphasising the importance of upholding individuals’ privacy and dignity, especially when collecting and analysing sensitive health data like PPG signals.

ABSTRAK
Gangguan mental mengganggu fungsi dan mempengaruhi kualiti hidup seseorang. Pandemik COVID-19 telah menyebabkan peningkatan bilangan individu yang mengalami gangguan mental, termasuk peningkatan kes bunuh diri. Ramai yang tidak sedar dengan status kesihatan mental mereka kerana tanda-tanda mungkin tidak jelas. Dalam kajian ini, pendekatan pembelajaran mesin (ML) yang membezakan antara kumpulan kes, iaitu pesakit yang disahkan mengalami gangguan mental, dan kumpulan kawalan, telah dibangunkan dengan menggunakan morfologi fotopletismogram (PPG). Subjek terdiri daripada 92 peserta, dibahagikan kepada kumpulan kes dan kumpulan kawalan, dengan pertimbangan jantina dan umur yang seimbang. Isyarat PPG dikumpul secara individu dalam eksperimen 5 minit dalam keadaan rehat. Daripada 13 ciri morfologi PPG, lapan ciri diekstrak menggunakan kaedah variasi kadar nadi dan lima ciri diekstrak menggunakan kaedah penentuan titik fidusial. Analisis statistik dan korelasi telah mengesahkan lapan ciri sebagai input kepada lima jenis algoritma ML. Hasil menunjukkan bahawa model k-Nearest neighbour (kNN) mencapai prestasi terbaik pada 92.86%, 99.10%, dan 96.43% untuk kepekaan, kekhususan, dan ketepatan. Nilai ralat dalam ramalan, atau purata ralat kuasa dua bagi kNN, adalah yang terendah pada 0.036. Dari segi kebolehterimaan model, kawasan di bawah lengkung penerimaan ciri untuk kNN (0.964) lebih tinggi berbanding model-model lain. Model ramalan gangguan mental telah dibangunkan menggunakan Pembelajaran Mesin (ML) daripada ekstraksi PPG. Secara kesimpulannya, gangguan mental boleh dikesan dengan menggunakan PPG berdasarkan hasil yang diperoleh. Pembangunan model ramalan ini juga menghormati nilai-nilai etika Islam dengan menekankan kepentingan perlindungan privasi dan kerahsiaan individu, terutamanya semasa mengumpul dan menganalisis data kesihatan yang diperolehi melalui isyarat PPG.

 


Full Text:

PDF

References


Ab Hamid, H. & Nayan, A. N. 2020. Methods of Extracting Feature from Photoplethysmogram Waveform for Non-Invasive Diagnostic Applications. International Journal of Online and Biomedical Engineering 16 (9): 39–62.

Alexandre Laurin. n.d. BP_annotate - File Exchange - MATLAB Central. Accessed April 15, 2022. https://www.mathworks.com/matlabcentral/fileexchange/60172-bp_annotate.

Charlton, Peter H. 2018. Assessing Mental Stress from the Photoplethysmogram: A Numerical Study. Physiological Measurement: 1–16.

Chowdhury, M. H., Md Nazmul, I. S., Muhammad ,E.H. C., Zaid B M., M. Monir, U., Amith, K. & Mamun, I. R. 2020. Estimating Blood Pressure from the Photoplethysmogram Signal and Demographic Features Using Machine Learning Techniques. Sensors (Switzerland) 20 (11).

Dillen, N., Marko, I., Edith, L., Lennart, E. N., Krzysztof, C. & Oliver S. 2020. Keep Calm and Ride Along: Passenger Comfort and Anxiety as Physiological Responses to Autonomous Driving Styles. Conference on Human Factors in Computing Systems - Proceedings, 1–13.

Elgendi, M. 2012. On the Analysis of Fingertip Photoplethysmogram Signals. Current Cardiology Reviews 8 (1): 14–25.

Firth, J., John, T., Jennifer, N., Rebekah, C., Abhishek, P., Simon, R. & Jerome S. 2017. The Efficacy of Smartphone-Based Mental Health Interventions for Depressive Symptoms: A Meta-Analysis of Randomized Controlled Trials. World Psychiatry 16 (3): 287–98.

Garb, Howard N. 2021. Race Bias and Gender Bias in the Diagnosis of Psychological Disorders. Clinical Psychology Review 90 (December): 102087.

Gent, P. v., Haneen Farah, Nicole, v. N. & Bart v. A. 2019. HeartPy: A Novel Heart Rate Algorithm for the Analysis of Noisy Signals. Transportation Research Part

F: Traffic Psychology and Behaviour 66: 368–78.

George, D. & Paul, M. 2003. SPSS for Windows Step by Step: A Simple Guide and Reference. 11.0 Update.

Ghazal, Taher M., Marrium, Anam., Hassan, M. K., Hussain, M., Farooq, M. S., Ali, H. M. A., Ahmad, M. & Soomro, T. R. 2021. Hep-Pred: Hepatitis C Staging Prediction Using Fine Gaussian SVM. Computers, Materials and Continua 69 (1): 191–203.

Ghazal, Taher M., Marrium, A., Hasan, M. K., Hussain, M., Farooq, M. S., Ali, H. M. A., Ahmad, M. & Soomro, T. R. 2021. IoT for Smart Cities: Machine Learning Approaches in Smart Healthcare—A Review. Future Internet 13 (8): 218.

Ralf, H., Frank M. S., Christian, S. & Ulrich H. 2019. Heart Rate Variability as Indicator of Clinical State in Depression. Frontiers in Psychiatry 10 (JAN): 1–8.

Kalra, P. & Vivek S. 2020. Mental Stress Assessment Using PPG Signal a Deep Neural Network Approach. IETE Journal of Research.

Kuhn, M. & Johnson, K. 2013. Applied Predictive Modeling with Applications in R. Springer. Vol. 26.

Lane, R. 2020. Expanding Boundaries in Psychiatry: Uncertainty in the Context of Diagnosis-Seeking and Negotiation. Sociology of Health and Illness 42 (S1):

-83.

Li, Q., & G. D. Clifford. 2012. Dynamic Time Warping and Machine Learning for Signal Quality Assessment of Pulsatile Signals. Physiological Measurement 33 (9): 1491-1501.

Liu, I., Shiguang Ni, & Kaiping Peng. 2020. Happiness at Your Fingertips: Assessing Mental Health with Smartphone Photoplethysmogram-Based Heart Rate Variability Analysis. Telemedicine and E-Health 26 (12): 1483-91.

Lu, S., He Zhao, Kihwan Ju, Kunson Shin, Myoungho Lee, Kirk Shelley & Ki H. Chon. 2008. Can Photoplethysmography Variability Serve as an Alternative Approach to Obtain Heart Rate Variability Information? Journal of Clinical Monitoring and Computing 22 (1): 23-29.

Madhan Mohan, P., V. Nagarajan, & Sounak Ranjan Das. 2016. Stress Measurement from Wearable Photoplethysmographic Sensor Using Heart Rate Variability Data. International Conference on Communication and Signal Processing, ICCSP 2016, 1141-44.

Moraes, Jermana L., Matheus X. Rocha, Glauber G. Vasconcelos, José E. Vasconcelos Filho, Victor Hugo C. de Albuquerque, & Auzuir R. Alexandria. 2018. Advances in Photopletysmography Signal Analysis for Biomedical Applications. Sensors (Switzerland) 18 (6): 1-26.

Nan, B., Ming, C. & Mang, I. V. 2010. Biomedical Signal Processing and Control On an Automatic Delineator for Arterial Blood Pressure Waveforms 5: 76-81.

Nardelli, M., Antonio, L., Gilles, B., Enzo P. S.& Gaetano V. 2017. Heartbeat Complexity Modulation in Bipolar Disorder during Daytime and Nighttime. Scientific Reports 7 (1): 1-11.

National Institute for Health and Care Excellence. 2016. Mental Health Problems in People with Learning Disabilities: Methods, Evidence and Recommendations.

Pakdamanian, E., Shili, S. & Sonia, B. 2021. Deeptake: Prediction of Driver Takeover Behavior Using Multimodal Data. Conference on Human Factors in Computing Systems - Proceedings, no. January.

Perpetuini, David, Antonio ,M. C., Daniela, C. , Chiara, F., Sergio, R., Simona, M. & Francesco, B. 2021. Prediction of State Anxiety by Machine Learning Applied to Photoplethysmography Data. PeerJ 9 (January): e10448.

Rinkevičius, M., Spyridon, K., Eduardo, G., Raquel, B., Jesus, L., Pablo, L. & Vaidotas, M. 2019. Photoplethysmogram Signal Morphology-Based Stress Assessment. In 2019 Computing in Cardiology Conference (CinC). Vol. 45. Computing in Cardiology.

Stautland, A., Petter, J., Ole, B. F., Berge, O., Jim, T., Tine, N., & Ketil, J, O. 2022. Heart Rate Variability as Biomarker for Bipolar Disorder. MedRxiv, no. February: 2022.02.14.22269413.

Uddin, Shahadat, Arif Khan, Md Ekramul Hossain, & Mohammad Ali Moni. 2019. Comparing Different Supervised Machine Learning Algorithms for Disease Prediction. BMC Medical Informatics and Decision Making 19 (1): 1-16.

Woon, Luke Sy Cherng, Hatta Sidi, Nik Ruzyanei Nik Jaafar, & Mohammad Farris Iman Leong Abdullah. 2020. Mental Health Status of University Healthcare Workers during the Covid-19 Pandemic: A Post-Movement Lockdown Assessment. International Journal of Environmental Research and Public Health 17 (24): 1-20.




DOI: http://dx.doi.org/10.17576/JH-2023-1502-08

Refbacks

  • There are currently no refbacks.


  ISSN: 1985-6830

eISSN: 2550-2271

JURNAL HADHARI: AN INTERNATIONAL JOURNAL
Institut Islam Hadhari
Universiti Kebangsaan Malaysia
43600 UKM Bangi
Selangor, MALAYSIA.


Phone: +603-8921 7187/7176/6994
Fax: +603-8921 6990
Email: jhadhari@ukm.edu.my

Web: ejournals.ukm.my/jhadhari