Flood inundation mapping in the Kelantan River Basin, Malaysia, using Sentinel-1 SAR and Google Earth Engine
Abstract
One of the most severe floods in Peninsular Malaysia occurred during 2021-2022, displacing over 20,000 people and resulting in two deaths in Kelantan. Accurate flood extent data during such events is crucial for effective flood management, however, gathering this information is challenging due to limited access to affected area. Google Earth Engine (GEE) offers rapid satellite image processing for flood inundation mapping, making it an effective tool for this purpose. In this study, GEE was utilized to generate flood inundation maps for the Kelantan River Basin (KRB) using Sentinel-1 SAR data. Site inspections and Sentinel-2 Multispectral Instrument (MSI) satellite images of the actual flood regions were then used to validate the flood inundation maps. Additionally, this study evaluated the effects of three distance thresholds (3-, 4- and 5-pixel) to differentiate inundated area from preliminary water surfaces. The findings showed that the flood inundation maps achieved an accuracy of 57 – 60%, with the highest accuracy observed under the 5-pixel threshold. The 2021-2022 flood, with an inundated area of 8.92 km2, was one of the worst experiences in Kota Bharu. These findings provide valuable insights to support local authorities in designing better flood mitigation strategies for the future.
Keywords: Climate change, climate extreme, flood GEE, Kelantan, Sentinel-1
Keywords
Full Text:
PDFReferences
Alias, N. E., Mohamad, H., Chin, W. Y., & Yusop, Z. (2016). Rainfall analysis of the Kelantan big yellow flood 2014. Jurnal Teknologi, 78(9-4), 83-90.
Amitrano, D., Di Martino, G., Iodice, A., Riccio, D., & Ruello, G. (2018). Unsupervised rapid flood mapping using Sentinel-1 GRD SAR images. IEEE Transactions on Geoscience and Remote Sensing, 56(6), 3290-3299.
Baillarin, S. J., Meygret, A., Dechoz, C., Petrucci, B., Lacherade, S., Tremas, T., Isola, C., Martimort, P., & Spoto, F. (2012). Sentinel-2 Level 1 products and image processing performances. The International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences, XXXIX-B1, 197-202.
Bernama. (2021, December 19). Flood situation worsens as at afternoon, more than 34,000 victims evacuated. The Sun Daily. https://www.thesundaily.my/local/flood-situation-worsens-as-at-afternoon-more-than-34000-victims-evacuated-YC8675809
EM-DAT. (2022). EM-DAT: The emergency events database. www.emdat.be
ESA. (2022). The Sentinel missions. https://www.esa.int/Applications/Observing_the_Earth/Copernicus/The_Sentinel_missions#:~:text=ESA%20is%20developing%20a%20new,robust%20datasets%20for%20Copernicus%20services.
Faghih, M., Mirzaei, M., Adamowski, J., Lee, J., & El-Shafie, A. (2017). Uncertainty Estimation in Flood Inundation Mapping: An Application of Non-Parametric Bootstrapping. River Research and Application, 33(4).
Firdaus, R. B. R., Tan, M. L., Rahmat, S. R., & Gunaratne, M. S. (2020). Paddy, rice and food security in Malaysia: A review of climate change impacts. Cogent Social Sciences, 6(1).
Gao, G., Lim, H. S., & Zhu, Y. (2021). Flood inundation analysis in Penang Island (Malaysia) based on InSAR maps of land subsidence and local sea level scenarios. Water, 13(11), 1518.
Ghosh, S., Kumar, D., & Kumari, R. (2022) Cloud-based large-scale data retrieval, mapping, and analysis for land monitoring applications with Google Earth Engine (GEE). Environmental Challenges, 9, 100605.
GoogleDevelopers. (2022a). FAO GAUL: Global Administrative Unit Layers 2015, First-Level Administrative Units. https://developers.google.com/earth-engine/datasets/catalog/FAO_GAUL_2015_level1
GoogleDevelopers. (2022b). JRC Global Surface Water Mapping Layers, v1.3. https://developers.google.com/earth-engine/datasets/catalog/JRC_GSW1_3_GlobalSurfaceWater
GoogleDevelopers. (2022c). WWF HydroSHEDS Void-Filled DEM, 3 Arc-Seconds. https://developers.google.com/earth-engine/datasets/catalog/WWF_HydroSHEDS_03VFDEM
Haralick, R. M., Shanmugam, K., & Dinstein, I. H. (1973). Textural features for image classification. Studies in Media and Communication SMC-3(6), 610-621.
Huang, W., DeVries, B., Huang, C., Lang, M. W., Jones, J. W., Creed, I. F., & Carroll, M. L. (2018). Automated extraction of surface water extent from Sentinel-1 data. Remote Sensing, 10(5), 797.
Hussain Shah, S. M., Mustaffa, Z., & Wan Yusof, K. (2017). Disasters worldwide and floods in the Malaysian region: A brief review. Indian Journal of Science and Technology, 10(2), 1-9.
Ibrahim, N. A., Wan Alwi, S. R., Abdul Manan, Z., Mustaffa, A. A., & Kidam, K. (2021). Flood impact on renewable energy system in Malaysia. Chemical Engineering Transactions, 89, 193-198.
IPCC. (2021). AR6 Climate Change 2021: The Physical Science Basis. https://www.ipcc.ch/report/ar6/wg1/#FullReport
Koh, L. S., Nayan, N., Hashim, M., Saleh, Y., & Mahat, H. (2021). Alternative water resources quality assessment during flood disaster in Kuala Krai, Kelantan, Malaysia. Sains Malaysiana, 50(3), 645-654.
Kseňak, Ľ., Pukanská, K., Bartoš, K., & Blišťan, P. (2022). Assessment of the usability of SAR and optical satellite data for monitoring spatio-temporal changes in surface water: Bodrog River case study. Water, 14(3), 299.
Landuyt, L., Van Wesemael, A., Schumann, G. J.-P., Hostache, R., Verhoest, N. E. C., & Van Coillie, F. M. B. (2018). Flood Mapping based on Synthetic Aperture Radar: An assessment of established approaches. IEEE Transactions on Geoscience and Remote Sensing, PP(99), 1-18.
Lee, T. S., Haque, M. A., & Najim, M. M. M. (2005). Scheduling the cropping calendar in wet-seededrice schemes in Malaysia. Agricultural Water Management, 71(1), 71-84.
Mason, D. C., Bevington, J., Dance, S. L., Revilla-Romero, B., Smith, R., Vetra-Carvalho, S., & Cloke, H. L. (2021). Improving urban flood mapping by merging Synthetic Aperture Radar-derived flood footprints with flood hazard maps. Water, 13(11), 1577.
Mohd Taib, Z., Jaharuddin, N. S., & Mansor, Z. (2016). A review of flood disaster and disaster management in Malaysia. International Journal of Accounting & Business Management, 4(2), 98-106.
Ong, H. S. (2022, January 4). Expert: Debris flood in Pahang and Selangor caused by multiple landslides, streams of waste. The Star. https://www.thestar.com.my/news/nation/2022/01/04/expert-debris-flood-in-pahang-and-selangor-caused-by-multiple-landslides-streams-of-waste
Potin, P., Bargellini, P., Laur, H., Rosich, B., & Schmuck, S. (2012). Sentinel-1 mission operations concept. 2012 IEEE International Geoscience and Remote Sensing Symposium, pp. 1465-1468, Quebec City, QC, Canada.
Pramanick, N., Acharyya, R., Mukherjee, S., Mukherjee, S., Pal, I., Mitra, D., & Mukhopadhyay, A. (2021). SAR based flood risk analysis: A case study Kerala flood 2018. Advances in Space Research, 69(4), 1915-1929.
Rahman, S. (2022, March 16). Malaysia’s Floods of December 2021: Can Future Disasters be Avoided? Researchers at ISEAS – Yusof Ishak Institute Analyse Current Events. https://www.iseas.edu.sg/wp-content/uploads/2022/03/ISEAS_Perspective_2022_26.pdf
Schlaffer, S., Chini, M., Dorigo, W., & Plank, S. (2022). Monitoring surface water dynamics in the Prairie Pothole Region of North Dakota using dual-polarised Sentinel-1 Synthetic Aperture Radar (SAR) time series. Hydrology and Earth System Sciences, 26(3), 841-860.
Tam, T. H., Abd Rahman, M. Z., Harun, S., Hanapi, M. N., & Kaoje, I. U. (2019). Application of satellite rainfall products for flood inundation modelling in Kelantan River Basin, Malaysia. Hydrology, 6(4), 95.
Tan, M.L., Juneng, L., Kuswanto, H., Do, H. X., & Zhang, F. (2023). Impacts of solar radiation management on Hydro-Climatic Extremes in Southeast Asia. Water, 15(6), 1089.
Tew, Y. L., Tan, M. L., Chun, K. P., Samat, N., & Mahamud, M. A. (2022a). Analysis of the relationship between climate change and land use change using the ESA CCI Land Cover maps in Sungai Kelantan Basin, Malaysia. Sains Malaysiana, 51(2), 437-449.
Tew, Y. L., Tan, M. L., Juneng, L., Chun, K. P., Hassan, M. H., Osman, S., Samat, N., Chang, C. K., & Kabir, M. H. (2022b). Rapid Extreme Tropical Precipitation and Flood Inundation Mapping Framework (RETRACE): Initial testing for the 2021–2022 Malaysia flood. ISPRS International Journal of Geo-Information, 11(7), 378.
Tsyganskaya, V., Martinis, S., Marzahn, P., & Ludwig, R. (2018). Detection of temporary flooded vegetation using Sentinel-1 time series data. Remote Sensing, 10(8), 1286.
Tulbure, M. G., Broich, M., Vincius, P., Gaines, M., Ju, J., Stehman, S. V., Pavelsky, T., Masek, J. G., Yin, S., Mai, J., & Betbeder-Matibet, L. (2022). Can we detect more ephemeral floods with higher density harmonized Landsat Sentinel 2 data compared to Landsat 8 alone?. ISPRS Journal of Photogrammetry and Remote Sensing, 185, 232-246.
Twele, A., Cao, W., Plank, S., & Martinis, S. (2016). Sentinel-1-based flood mapping: A fully automated processing chain. International Journal of Remote Sensing, 37(13), 2990-3004.
Zhang, M., Chen, F., Liang, D., Tian, B., & Yang, A. (2020). Use of Sentinel-1 GRD SAR images to delineate flood extent in Pakistan. Sustainability, 12(14), 5784.
Refbacks
- There are currently no refbacks.