Jurnal Antarabangsa (Teknologi Maklumat) 3(2002): 53-72

VRPML Solution to the ISPW-6 Problem

KaMAL Z. ZAMLI

ABSTRACT

Software processes relate 10 sequences of steps that must be carried out by
software engineers to pursue the goals of software engineering. For the last
15 years, modeling of software processes using a process modeling
languages (PMLs) and its enactment has gained much interest, notably to
provide guidance, automation and enforcement of procedures and policies in
software engineering. To assist comparison and contrast among various
approaches, the ISPW-6 software process was defined by the software
engineering community, In this paper, we present a step by step solution 1o
the ISPW-6 problem using our own PML called Virtual Reality Process
Modeling Language (VRPML). In doing so, we also discuss some of the novel
features of VRPML.

Keywords: Process Modeling Languages, Sofrware Processes, Software
Engineering

ABSTRAK

Proses pembangunan applikasi berkait rapat dengan activiti-aktiviti yang
mesti diambil oleh jurutera perisian untuk mencapai matlamat utama
kejuruteraan perisian. Selalunya, proses pembangunan applikasi ini di
terjemahkan sebagai model program melalui bahasa pengaturcaraan proses
(PML) yang boleh di lari bertujuan untuk membantu, mengawal, dan
mengautomasi aktiviti pembangunan perisian. Di dalam kertas kerja ini,
kami menjelaskan secara terperinci penyelesaian kepada masalah ISPW-6
menggunakan bahasa pengaturcaraan process realiti maya (VRPML). Serentak
dengan itu, kami juga menerangkan beberapa ciri-ciri novel yang terdapat
pada VRPML.

INTRODUCTION

For the last 15 years, modeling of software processes using a process
modeling languages (PMLs) and its execution (termed enactment) has gained
much interest, notably to provide guidance, automation and enforcement of

procedures and practices in software engineering. Various approaches have
been proposed ranging from the use of Petri Nets (e.g. SLANG (Bandinelli,
Fuggetta et al. 1994), Funsoft Nets (Emmerich and Como 1991)), database
languages (e.g. ADELE-TEMPO (Belkhatir, Estublier et al. 1994)), textual
process modeling languages (e.g. JIL (Sutton Jr. and Osterweil 1997), ALF
(Canals, Boudjlida et al. 1994)) and visual process modeling languages (e.g.
APEL (Dami, Estublier et al. 1998), DYNAMITE (Heiman, Joeris et al. 1996),
Little JIL (Wise 1998)). A survey of PMLs is actually beyond the scope of
this paper but can be found elsewhere in (Huff 1996; Conradi and Jaccheri
1999; Zamli 2001).

To assist comparison and contrast among various approaches, the
ISPW-6 problem (Kellner, Feiler et al. 1990) has been defined by the software
engineering community. In this paper, we present a step by step solution to
the ISPW-6 problem using our own PML called Virtual Reality Process
Modeling Language (VRPML) (Zamli and Lee 2002). In doing so, we also
discuss some of the novel features of VRPML.

OVERVIEW OF VRPML

VRPML is our research vehicle of investigating the issues relating to need the
support for dynamic creation tasks and allocation of resources (in terms of
software engineers, artifacts and tools) (Zamli and Lee 2002), as well as the
human dimensions in terms of the support for process awareness, user
awareness and process visualization(Zamli and Lee June 2001). The novel
features of VRPML are that it supports integration with a virtual environment
and allows dynamic allocation of resources by exploiting the enactment
model.

Software processes are written in VRPML as graphs, by interconnecting
nodes from top to bottom using arcs carrying control flow signals. In terms
of its structure, VRPML graphs are cyclic. In terms of the language
computational model, VRPML is a control-flow based visual language which
supports modeling and enacting of software processes in a virtual
environment, Software processes are generically modeled and resources can
be dynamically assigned and customized for specific projects.

As an illustration for VRPML syntax, Figure 1 depicts the main VRPML
graph of the ISPW-6 problem. The overall explanation of the ISPW-6
problem and the VRPML solution of the problem will not be fully discussed
until Section 4.0.

Similar to JIL (Sutton Jr. and Osterweil 1997) and Little JIL (Wise 1998)
software processes in VRPML are described using process steps, which
represent the most atomic representation of a software process (i.e. the actual
task that software engineers are expected to perform). These process steps are

54

ModifyTestPlan i
‘_-‘: D

RaviewDesign‘
S DsgnEn
o~ sgnEngr P

ModifyDesign
"\.- DsagnEngr

ModifyCode Mo_gifyUnitTestF' ackage
= DsgnEngr
i

m;iWUnitkaage

_ ModifyCode \\ ;\ QAEngr

\ ;\ DsgﬂEl‘lQ;\ _—-..f; jf:;a,

[TestuUnit i
s

~ -

N,

FIGURE 1. VRPML Solution of the ISPW-6 Problem

represented as nodes, called activity nodes (shown as small ovals with stick
figures). VRPML supports a number of different kinds of activity nodes as
shown in Figure 1.

The activity nodes are: general purpose activity nodes (e.g. modify
design, modify test plan, modify code, modify unit test package);
multi-instance activity nodes (e.g. review design); and meeting nodes (e.g.
review meeting). Activity nodes are parameterized node accepting a role
assignment as a parameter which may be used to allocate a specific software
engineer to the task. In a meeting activity node and a multi-instance activity
node, the depth of activity can also be specified (describe below) as a
resource in terms of how many software engineers will be involved.

55

The firing of activity nodes is controlled by the arrival of a control flow
signal. In VRPML, an initial control flow signal is always be generated from
a start node (a white circle enclosing a small black circle). A stop node (a
white circle enclosing another white circle) does not generate any control
flow signals. Control flow signals may also be generated at the completion
of a node, often from special completion events called transitions (shown as
small white circles with a capital letter, attached to an activity node) or
decomposable transitions (small black circles with a capital letter).
Decomposable transitions enable automation scripts or sub-graphs to be
specified (and executed if selected) before allowing transition to generate a
control flow signal. This is to ensure that certain required post-conditions
have been satisfied before allowing the completion or cancellation of an
activity. For example, the sub-graph associated with the decomposable
transition representing Done (labeled D) for the activity node called modify
code is given in Figure 2.

SWEnNgr /

=R D}
-'._/fi“‘(aaN
i N/

FIGURE 2. Sub-graph for the decomposable transition labeled D in Modify Code

If the transition representing Redo (labeled R) in the activity node check
compilation in Figure 2 is selected by the assigned software engineer (i.e.
code do not compile), a control flow signal will be generated and will
automatically re-enable its parent activity node the modify code through a
re-enabled node (shown as two overlapping circles enclosing a black circle).

VRPML allows activity nodes to be enacted in parallel using multi-instance
nodes (overlapping ovals) or combinations of language elements called
merger and replicator nodes (trapezoidal boxes with arrows inside). To
improve readability, a set of VRPML nodes can be grouped together and
replaced by a macro node (shown as dotted line ovals), with the macro
expansion appearing on a separate graph. For example, referring to Figure 1,
Test Unit is a macro node. The macro expansion of Test Unit is given in
Figure 3.

56

Test
j\ DsgnEngr

FeedbackForBo
~

- .

X DsgnEngr

FeedbackForModif
g~
A~ DsgnEngr

D

FIGURE 3. Macro Expansion for Test Unit

For every activity node, VRPML provides a separate workspace. Figure
4 depicts a sample workspace for the activity node called Modify Code in
Figure 1. A workspace, the concepts borrowed from ADELE-TEMPO (Belkhatir,
Estublier et al. 1994), typically gives a work context of an activity as it hosts
resources needed for enacting the activity: transitions, artifacts (shown as
overlapping two overlapping documents with arrows for depicting access
rights), communication tools (shown as a microphone) and any task
descriptions (shown as a question mark). Effectively, when an activity node
is enacted, the workspace is mapped into a virtual room, transitions into
buttons, and artifacts, communication tools and task description into objects
which may be manipulated by the assigned software engineer to complete the
particular task at hand.

g 2

Sarete ChjectOoe PTMUncAionTad

FIGURE 4. Sample workspace for an activity node

57

As far as enactment is concerned, the enactment model for VRPML can
be seen in Figure 5 expressed in terms of a state transition diagram.

Resources needed for the plo
step are successlully acquired

Resource exceplion Arrival ot a control

flow signal

Resource exceplion

Process step

Process step is 8. tarminated

terminated

A new conirol flow
signal is generated

g Process step Is
terminated

Engineer undertakes the

Engineer selects any ol the
process step

Progressing possible transitions

FIGURE 5. VRPML Enactment Model

The behavior of the runtime systems supporting such an enactment
model can be thought of as consisting of a single producer (VRPML
interpreter) and multiple consumers (engineer’s runtime support system)
communicating using a shared tuple space as in Linda (Gelernter 1985).
Upon the arrival of a control flow signal, an activity node will be in an
enabled state. This is the case where the VRPML interpreter attempls (o
acquire resources (in terms of role assignments, artifacts, tools as well as
depths of activity nodes) that the activity node needs. If resources are
successfully acquired, the VRPML interpreter then “produces” the process
step corresponding to that activity node in the tuple space. The engineer’s
runtime support system then “‘consumes” the process step putting it into a
ready state. Ideally, in this state, the process step is made available in the
to-do-list of the assigned software engineer. If for any reason, VRPML
interpreter fails to acquire resources it needs, a resource exception (i.e.
resource unknown or resource unavailable) will be thrown putting the
enactment of that particular process step in the VRPML graph into a
suspended state. In this state, VRPML interpreter automatically produces a
process step in the tuple space for the administrator (in this case, it may be
the project manager) to rectify the resource exception or completely
terminate the process step (putting it in an aborted state). If a process step
is terminated, the administrator may optionally terminate the overall
enactment of the particular VRPML graph in question or manually re-enact

58

connecting and enclosing nodes (e.g. in a decomposable transition) by
providing the necessary control flow signals that they need to fire. If the
resource exception is rectified, enactment of the particular VRPML graph can
continue allowing VRPML interpreter again to “produce” the process step in
the tuple space. This process step can then be put into a ready state once the
engineer’s runtime support system has consumed it. If an engineer selects
that particular process step (in the progressing state), a workspace for that
process step will appear as a virtual room with artifacts, transitions and
communication tools as objects which software engineer can manipulate to
complete the task. The process step is in the completed state when the
software engineer selects any one of the possible transitions regardless of its
outcome (e.g. passed, failed, done, or aborted).

It must be stressed that it is impossible to describe all the syntax and
semantic of VRPML notation here due to space limitation, however,
interested readers are referred to our earlier work in (Zamli and Lee 2002).
In the next section, the ISPW-6 problem will be revisited. A detailed
discussion of the ISPW-6 problem will be offered along with their solution
expressed in VRPML.

THE ISPW 6.0 PROBLEM

The ISPW-6 problem (Kellner, Feiler et al. 1990) is a benchmark problem in
research into PMLs. It concerns with the software requirement change request
for an existing software component occurring either towards the end of the
development phase or during maintenance phase of the software lifecycle.
The ISPW-6 problem starts in response to the software requirement change
request with the project manager scheduling and assigning various engineering
activity in the process. These activities include: Schedule and Assign Task;
Modify Design; Review Design: Modify Code; Modify Test Plans; Modify
Unit Test Package: and Test Unit. During the enactment of these activities,
the project manager is also required to monitor their progress.

In each of these activities, the ISPW-6 problem defines restrictions in
terms of the input and output artifacts, the role responsible for each activity
as well as conditions for each activity initiation and termination. Table 1
summarizes the role responsibility, inputs and outputs as well as constraints
defined for each of the activity.

Apart from defining restrictions in terms of the input and output artifacts,
the role responsible for each activity as well as conditions for each activity
initiation and termination, the ISPW-6 problem also defines specific ordering
of the related activities which is shown in Figure 6.

Having described and summarized the ISPW-6 problem in details, it is
now appropriate that the solution expressed in VRPML is presented.

59

TABLE |. Summary of the ISPW-6 Problem

Schedule
And
Assign
Tasks

Responsibility: Project Manager

Inputs: Requirement Change, Authorisation, Project Plans

Outputs: Updated Project Plans, Notification of Task Assignments and
Schedule Dates, Requirement Change

Constraints:

- Begins as soon as authorisation is given

- Ends when outputs have been provided

Modify
Design

Responsibility: Design Engineer

Inputs: Requirement Change, Current Design, Design Review Feedback

Outputs: Modified Design

Constraints:

- Can begin as soon as the task been assigned

- Subsequent iteration can begin if design is not approved by the
Review Design

- Ends when outputs have been provided

Review
Design

Responsibility: Design Review Team

Inputs: Requirement Change, Modified Design

Outputs: Design Review Feedback, Approved Modified Design.

Outcome Notification

Constraints:

- Begins on schedule provided the modified design is available at the
time

- Ends when outputs have been provided

Modify
Code

Responsibility: Design Engineer
Inputs: Requirement Change, Modified Design, Current Source Code,
Feedback Regarding Code

Qutputs: Modified Source Code, Object Code

Constraints:

- Can begin as soon as the task has been assigned even if Modify
Design has not begun (discretion)

. Ends when clean compilations are achieved, outputs have been
provided and design is approved

- Subsequent iteration can begin if required when test unit has
completed

Modify
Test
Plans

Responsibility: QA Engineer
Inputs: Requirement Change. Current Test Plans
Outputs: Modified Test Plans
Constraints:

Can begin as soon as the task been assigned
- Ends when outputs have been provided

60

cont. TABLE |

Modify Responsibility: QA Manager
Unit Test Inputs: Requirement Change, Modified Test Plans, Current Unit Test
Package Package, Modified Design, Source Code, Feedback Regarding
Test Package
Outputs: Modified Unit Test Package
Constraints:
- Can begin as soon as Modify Test Plans has completed
- Subsequent iteration can begin if required as Test Unit has completed
- Ends when outputs have been provided
Test Responsibility: Design Engineer, QA Engineer
Unit Inputs: Requirement Change, Object Code, Unit Test Package
Outputs: Test Results, Feedback Regarding Code, Feedback Regarding
Test Package, Notification of Successful Testing
Constraints:
- Can begin as soon as both Object Code and Unit Test Package are
available
- Ends when outputs have been provided
Monitor Responsibility: Project Manager
Progress Inputs: Requirement Change, Notification of Completion (from all tasks),

Current Project Plans, Outcome Notification, Notification of
Successful Testing, Decision Regarding Cancellation

Outputs: Updated Project Plans, Notification of Revised Task, Cancel

Recommendation

Constraints:

- Persists throughout the duration of the process

- Ends when Test Unit has been successfully completed or cancellation

of the whole ISPW process

-

Schedule and
Assign Task

Modity Design MOdiT Test Plang

Review Design Modity Unit
\ Test Package
Modify Code //

Test Unit

Monitor Progress

FIGURE 6. Flow of activities in the ISPW-6 Problem

61

VRPML SOLUTION OF THE ISPW 6.0 PROBLEM

As depicted in Figure 1, the ISPW-6 solution expressed in VRPML consists
of one start node, one stop node, two replicator nodes, one merger node, six
general purpose activity nodes, one meeting activity node, one multi-instance
activity node as well as one macro node.

Two activities described in the ISPW-6 problem do not form as parts of
the VRPML solution. The two activities are: Schedule and Assigned Task;
and Monitor Progress. In VRPML solution of the ISPW-6 problem, these two
activities are intentionally left out to demonstrate that VRPML solution is
generic, and the enactment of the ISPW-6 problem (and VRPML graph in
general) is dynamic in that scheduling of tasks and their assignment of
resources can be incrementally achieved according to the dynamic need of a
particular project.

For the same reason, VRPML solution also intentionally ignores the fact
that Modify Code can be started upon discretion of a project manager even
when Modify Design and Review Design have not even begun (see Flow of
activities in Figure 6). This also relates to the dynamic nature of software
processes that is, how can the project manager know in advance which source
code to modify when the modify design and the review design have not even
started. Even if the source code to be modified may be known in advance,
allowing the coding activity to precede the design and review activities can
often lead to poor and badly structured design. On the other hand, perhaps as
a way to do prototyping, the coding activity may precede the design and the
review activities but it should be modeled and enacted separately.

Apart from dynamic issues raised by Schedule and Assigned Tasks,
Monitor Progress and Modify Code activities, most tasks describe in the
ISPW-6 problem appear directly as activity nodes in the VRPML graph in
Figure 1 with the exception of Review Design, and Test Unit. Review Design
is actually broken down into two activities in the VRPML graph: Review
Design; and Review Meeting. This is because Review Design actually
involves two activities relating to the review of the design and the collective
decision making process.

Test Unit, on the other hand, is broken down into five activities grouped
into a macro node called Test Unit (describe below) involving: Test, Test
Analysis; Feedback for Modify Code: Feedback for Test Package: and
Feedback for Both. Similar to Review Design, the main rationale for
breaking down Test Unit into five activities is that apart from testing, Test
Unit also involves collective decision making process on the test outcome as
well as giving the appropriate feedback on the test results.

In terms of its enactment, when the VRPML graph in Figure | is first
enacted, a control flow signal is initially generated by the start node. This
control flow signal is then replicated by the replicator node to enable the

62

Modify Design and Modify Test Plans. Upon the arrival of the control flow
signals for both activity nodes, VRPML interpreter attempts to acquire the
resources (in terms of the artifacts, roles and engineer’s assignment) for both
activities. If not successful, either resource has not yet been assigned or
resource has been assigned but it is not available, resource exception will be
thrown. In this case, the enactment of the activity whose resource exception
is thrown will be suspended. In turn, VRPML interpreter automatically creates
a task for the project manager to fix the resource exception or terminate the
overall enactment. In this way, resource allocation can be done dynamically
in VRPML. This is an important feature for a PML as resources in software
processes are dynamic and rarely can they be completely specified ahead of
time.

Assuming that no resource exceptions are thrown for both activity nodes,
Modify Design and Modify Test Plans can now appear in the to-do-list of the
assigned software engineer. Once the assigned software engineer chooses to
undertake the activity, the workspace of the activity will be opened in a
virtual environment. To allow completion or cancellation of an activity, the
software engineer may select from any one of the given transitions which
appear as objects in a virtual environment. In turn, the selected transition will
automatically generate the appropriate control flow signal to support further
enactment. As the enactment of the VRPML graph in Figure 1 is relatively
straight forward, it will not be traced further.

Nevertheless, there are a number of issues worth mentioning regarding
to the enactment of VRPML graph in Figure 1. The first issue relate to the
enactment of the multi-instance activity node called Review Design and the
meeting node called Review Meeting. These two tasks are actually representing
Review Design activity in Table 1. As discussed earlier, the depths the
multi-instance activity node and the meeting activity node, which correspond
to how many software engineers involved, can also be dynamically specified
as a resource that is, they are also subjected to resource exception. Thus,
apart from the resource relating to the assignment of software engineers,
tools, and artifacts, how many software engineers that will be assigned for the
review design and the review meeting can also optionally be specified either
before or dynamically during enactment. This feature enables VRPML to
support dynamic creation of tasks according to the need of a particular
project.

The second issue relates to the enactment of a macro node called Test
Unit. This macro node actually represents Test Unit activity in Table 1 which
consists of a number of tasks. These tasks are: Test; Feedback for both;
Feedback for Test Package; Feedback for Modify Code; and Testing Analysis.
During enactment, when a control flow signal encounters a Test Unit macro,
the enacted graph is rewritten to include the tasks defined in that macro.

63

As far as work context is concerned, each activity node (shown in Figure
1, Figure 2, and Figure 3 earlier) must always be accompanied by its
respective workspace along with the appropriate definition of resource and
transitions. The definition of workspaces, resource, and transitions will be
discussed next.

The workspace for an activity node called Modify Design in Figure | is
defined in Figure 7. It consists of a transition called done and three artifacts
consisting of Current Design, Requirement Change, and Design Review
Feedback along with their appropriate access rights.

| S

Current Design

LA

| Requirement Change

ﬁh

Design Review Feedback

FIGURE 7. Workspace for an activity node called Modify Design

The workspace for a multi-instance activity node called Review Design
in Figure | is defined in Figure 8. It consists of a transition called (D)one,
a synchronous communication tool and two artifacts consisting of
Requirement Change. and Modified Design along with their appropriate
access rights.

| 5|
! @ 3 - :
‘ Communication Tool i

Review De5|gn |
RZDsgn Engr

! Requirement Change

N

Modified Design

FIGURE 8. Workspace for a multi-instance activity node called Review Design

The workspace for a meeting activity node called Review Meeting in
Figure 1 is defined in Figure 9. It consists of two transitions (called (P)assed
and (F)ailed), both asynchronous and synchronous communication tool and
four artifacts consisting of Requirement Change, Design Review Feedback,
Outcome Notification and Modified Design along with their appropriate

64

access rights. It must be stressed that the workspace for different types of
activity nodes are unique. The reason for having a unique workspace is to
support a sense of process awareness during process enactment. For instance,
software engineers are able to distinguish whether the process steps that they
are undertaking also concurrently involve other software engineers - the case
for multi-instance and meeting activities. Such awareness should encourage
inter-person communications, which is seen as one of the important aspect of
supporting collaborative work (Yang 1995).

[=3 | P |
= EmailTool § —
COutcome Notification Communication Tool

!’ N

=U]

Review Meeis'n

Q) %Dsgn i

Requirement Change

| ®
= Eivt
' Modified Design Design Review Feedback

FIGURE 9. Workspace for a meeting activity node called Review Meeting

The workspace for an activity node called Modify Code in Figure 1 is
defined in Figure 10. It consists of a decomposable transition called (D)one,
a synchronous communication tool and five artifacts consisting of Requirement
Change, Source Code, Object Code, Feedback Regarding Code and Modified
Design along with their appropriate access rights.

ErET i

|Source Code Object Code Communication Tool |

A

Modify Code
i Dsgn Engr

: Requirement Change

=4 Sl

Modified Design Feedback Regarding Code

FIGURE 10. Workspace for an activity node called Modify Code

The workspace for an activity node called Modify Test Plans in Figure
1 is defined in Figure 11. It consists of a transition (R)edo and two artifacts
consisting of Requirement Change, and Current Test Plans along with their
appropriate access rights.

65

9

vt

Current Test Plans Modify Test Plans

= QA Engr
i BA B

| Requirement Change |

FIGURE 11. Workspace for an activity node called Modify Test Plans

The workspace for an activity node called Modify Unit Test Package in
Figure 1 is defined in Figure 12. It consists of a transition called (D)one, and
six artifacts consisting of Requirement Change, Source Code, Modified Test
Plans, Current Unit Test Package, Feedback Regarding Test Package and
Modified Design along with their appropriate access rights.

A
= 4
Source Code Modified Design
&g
Modified Test Plans 'fOdify Unit Test Package
= ADPsgn Engr
: Bl

i Requuement Change

=4 7* Feedback Regardmg Test Package
|Currem Unit Test Package

FIGURE 12. Workspace for an activity node called Modify Unit Test Package

The workspace for an activity node called Check Compilation (a
sub-graph of the decomposable transition D for activity node called Modify
Code) in Figure 2 is defined in Figure 13. It consists of two transitions called
(D)one and (R)edo, and two artifacts consisting of Source Code, and Object
Code along with their appropriate access rights.

%
A
| Source Code Check Compilatiol !
f\ SW Engr !
r Elv '
Object Code i

FIGURE 13. Workspace for an activity node called Check Compilation

66

The workspace for an activity node called Test in Figure 3 is defined in
Figure 14. It consists of a transition called (D)one, and four artifacts
consisting of Current Unit Test Package, Requirement Change, Test Result,
and Object Code along with their appropriate access rights.

- ;T
| E]" J Current Unit Test Package
Object Code

By

Reguirement Change

Bl

Test Result |

FIGURE 14, Workspace for an activity node called Test

The workspace for a meeting activity node called Test Analysis (from
Test Unit macro) in Figure 3 is defined in Figure 15, It consists of four
transitions (called (P)ass, (T)est, (B)oth, and (C)ode), both synchronous and
synchronous tools as well as three artifacts consisting of Requirement
Change, Test Result, and Notification of Successful Testing along with their
appropriate access rights.

== 6 [

| .

. Email Tool Communication Tool
E‘* Test Anslysis

| Requirement Change S

| O—@—c~

= vt

T“t_ .Result Notification Of Successful Testing

FIGURE 15. Workspace for a meeting activity node called Test Analysis

The workspace for an activity node called Feedback for Test Package
(from Test Unit macro) in Figure 3 is defined in Figure 16. It consists of a
transition called (D)one, and two artifacts consisting of Requirement Change,
and Feedback Regarding Test Package along with their appropriate access
rights.

67

Feedback Regarding Test Package

FIGURE 16. Workspace for an activity node called Feedback for Test Package

The workspace for an activity node called Feedback for Modify Code
(from Test Unit macro) in Figure 3 is defined in Figure 17. It consists of a
transition called (D)one, and two artifacts consisting of Requirement Change,
and Feedback Regarding Code along with their appropriate access rights.

——

= ?

=+ I

‘ Requirement Change

| Fesdback For Modify Sode
| Eivt i{)sgn Engr |
| Feedback Regarding Code D

FIGURE 17. Workspace for an activity node called Feedback for Modify Code

The workspace for an activity node called Feedback for Both (from Test
Unit macro) in Figure 3 is defined in Figure 18. It consists of a transition
called (D)one, and three artifacts consisting of Requirement Change, Feedback
Regarding Test Package and Feedback Regarding Code along with their

appropriate access rights.

] _-'J_:‘I‘
:Jv| Ll

|Faedback Regarding Test Package

[eedback For Both
‘ ﬁDsgn Engr

!

A ®

‘ Feedback Regarding Code @A
Requirement Change |

FIGURE 18, Workspace for an activity node called Feedback for Both

68

LESSON LEARNED

In providing the solution to the ISPW-6 problem, a number of lessons can be
learned in terms of the effectiveness of representations, language
expressiveness, and modularity as well as scalability of VRPML. These
lessons are summarised below:

Effectiveness of representations: Because VRPML notations are purely
graphical, it seems straightforward to make sense out the VRPML
representations. In fact, to some extent, the general structure of VRPML
resembles that of a flowchart.

Language expressiveness: It is difficult to measure expressiveness of
VRPML simply by modelling and enacting one specific problem as the ISPW-6
problem. However, because the ISPW-6 problem is designed by experts in the
field, and the fact that VRPML can straightforwardly model the solution is a
positive indication about its expressiveness. Nonetheless, because VRPML is
a control-flow based language, it suffers from the problem of race condition,
that is, two or more control flow signals can compete to enable a particular
node. This problem is currently being addressed in the notation by exploiting
the resource exception handling mechanism.

Modularity and Scalability: VRPML is highly modular in the sense that
activities are model as a step in a software process. VRPML also provides a
macro node which can group one or more nodes together. One obvious
limitation is that VRPML suffers from the problem of scale, that is, it takes
much space. Even a small problem like the ISPW-6, VRPML solution consists
of twelve different types of activities nodes (including macro expansion) as
well as twelve corresponding workspaces. One point to note is that this
limitation is inherent in any graph based visual language.

DISCUSSION

Throughout section 2, 3, 4 and 5, we have presented a step by step solution
to the ISPW-6 problem expressed in VRPML together some of the preliminary
lesson learned. It can be seen that our solution is characterized by a number
of novel features:

* Software processes, expressed as process steps by activity nodes, are
also described in terms of workspaces which host artifacts and tools, and
can be represented in a virtual environment. The concept of workspaces
in which software engineers can perform their tasks is not new as it can
also be seen in ADELE-TEMPO (Belkhatir, Estublier et al. 1994), but the
way that workspace is integrated with a virtual environment in VRPML
is. This opens up a possibility for supporting process awareness, user
awareness and process visualization utilising a virtual environment. As

69

70

FIGURE 19. Workspace snapshot for Modify Design seen during enactment

an illustration, Figure 19 depicts a snapshot from the enactment of the
ISPW-6 for an activity node called Modify Design.

Resources in terms of software engineers, artifacts, and tools needed for
the software processes can be dynamically assigned. This is especially
important in the case of activity nodes involving multiple software
engineers (e.g. multi-instance activity nodes and meeting activity nodes).
How many engineers are assigned for such activity nodes (i.e. their
depths) depends on the dynamic needs of a particular project. The
support for dynamic creation of tasks and allocation of resources is also
provided in other PMLs such as Dynamite (Heiman, Joeris et al. 1996)
via on the fly process evolution based on graph rewriting and SLANG
(Bandinelli, Fuggetta et al. 1994) via process evolution based on
reflection. While both approaches have successfully addressed the
support for dynamic allocation of resources, they suffer from one major
limitation. Because both approaches relies on process evolution, extra
overhead may be introduced involving steps in to ensure that no ad hoc
changes and no side effects are done to the process models which can be
difficult and expensive to achieve.

In line with the current trends of software engineers working across
geographically and temporally distributed software engineering teams,
VRPML also provide support for specifying virtual meetings. Supporting
virtual meetings seem advantageous since meetings are an important
characteristic of software engineering. Furthermore, virtual meetings
could help reduce costs if a meeting would otherwise be held face to
face. However, supporting a virtual meeting (for geographically and

temporally distributed software engineering reams) raises an issue of
time differences. While this issue is beyond the scope of VRPML, one
solution might be that software engineers are given access to
communication tools in a meeting activity node workspace to allow
communication and scheduling of the virtual meeting at a time
convenient to all parties.

CONCLUSION

In conclusion, this paper describes a step by step solution of the ISPW-6
problem expressed in VRPML, a visual PML for modelling and enacting of
software processes. Novel features introduce in VRPML include the support
for dynamic creation of tasks and allocation of resources, and integration
with a virtual environment at the PML enactment level. Currently, additional
experimentations are planned to provide further evaluations of VRPML
especially in the field of Workflow Management System (WFMS).

REFERENCES

Bandinelli, S., A. Fuggetta, et al. (1994). SPADE: An Environment for Software
Process Analysis, Design and Enactment. Seofrware Process Modelling and
Technology. B. Nuseibeh. Taunton, England, Research Studies Press: 223-247.

Belkhatir, N., J. Estublier, et al. (1994). ADELE-TEMPO: An Environment to
Support Process Modelling and Enaction. Sofrware Process Modelling and
Technology. B. Nuseibeh. Taunton, England, Research Studies Press: 187-222.

Canals, G., N. Boudjlida, et al. (1994). ALF: A Framework for Building
Process-Centred Software Engineering Environments. Sofrware Process
Modelling and Technology. B. Nuseibeh. Taunton, England, Research Studies
Press: 153-185.

Conradi, R. and M. L. Jaccheri (1999). Process Modelling Languages. Sofrware
Process: Principles, Methodology and Technology. D. Wastell. Berlin-Heidelberg,
Lecture Notes in Computer Science Yolume 1500, Springer: 27-52.

Dami, S., J. Estblier, et al. (1998). "APEL: A Graphical Yet Executable Formalism
for Process Modelling.” Automated Sofrware Engineering 5(1): 61-96.

Emmerich, W. and V. G. Como (1991). FUNSOFT Nets: A Petri-Net based Software
Process Modeling Language. Proceedings of the 6th International Workshop on
Software Specification and Design. Italy, IEEE Computer Society Press.

Gelemnter, D. (1985). “Generative Communication in Linda.” ACM Transactions on
Programming Languages and Systems 7(1): 80-112.

Heiman, P., G. Joeris, et al. (1996). DYNAMITE: Dynamic Task Nets for Sofrware
Process Managemeni. Proceedings of the 18th International Conference on
Software Engineering, Berlin, Germany, IEEE Computer Prress.

Huff, K. E. (1996). Software Process Modeling. Trends in Sofrware Process. A. Wolf,
John Wiley & Sons: 1-24.

Kellner, M. 1., P. H. Feiler, et al. (1990). Sofrware Process Modeling Example
Problem, Proceedings of the 6th International Software Process Workshop,
Hakodate, Hokkaido, Japan, IEEE Computer Society Press.

71

Sutton Jr., S. and L. J. Osterweil (1997). The Design of a Nexi-Generation Process
Language. Proceedings of the Joint 6th European Software Engineering
Conference and the 5th ACM SIGSOFT Symposium on the Foundation of
Software Engineering, Lecture Notes in Computer Science Volume 1301, Springer.

Wise, A. (1998). Little JIL 1.0 Language Report - Technical Report 98-24,
Department of Computer Science, University of Massachusetts at Amherst.

Yang, Y. (1995). Coordination for Process Support is Not Enough. Proceedings of the
4th European Workshop on Software Process Technology, Lecture Notes in
Computer Science Volume 913, Springer.

Zamli, K. Z. (2001). “Process Modeling Languages: A Literature Review.” Malaysia
Journal of Computer Science 14(2): 26-37.

Zamli, K. Z. and P. A. Lee (2002). Exploiting a Virtual Environment in a Visual PML.
Proceedings of the 4th International Conference on Product Focused Software
Process Improvements, Rovaniemi, Finland, Lecture Notes in Computer Science
Volume 2559, Springer.

Zamli, K. Z. and P. A. Lee (June 2001). Taxonomy of Process Modeling Languages.
Proceedings of the ACS/IEEE International Conference on Computer Systems
and Applications, IEEE Computer Society Press.

MAKLUMAT PENGARANG

Kamal Z. Zamli

Pusat Pengajian Elektrik Elektronik,
Universiti Sains Malaysia,

14300 Nibong Tebal

Pulau Pinang
kamal_zamli@yahoo.com

72

